AGROECOLOGIA E BIOARCHITETTURA

opportunità per nuove economie sostenibili

3 febbraio 2017

CENTRO PARCO "R.N.O. LA FAGIANA" DI MAGENTA (MI) FRAZ. PONTEVECCHIO

Agroecologia: le nuove frontiere, le funzioni, le economie

Stefano Bocchi

Dipartimento di Scienze Agrarie e Ambientali

Via Celoria, 2 Milano

Le rivoluzioni agricole come sono raccontate.

- Taglia e brucia, rotazione dell'insediamento
- Aratro leggero, maggese, allevamento estensivo
- Aratro pesante, maggese, allevamento estensivo
- Rotazione continua, intensificazione dell'allevamento

Rivoluzioni: forti innovazioni con dinamiche di integrazione. Innovazioni non completamente sostitutive

Green revolution: caratteristiche del modello concettuale

- (a) Innovazione inizialmente focalizzata su un singolo prodotto;
- (b) Innovazione sviluppata da un gruppo di ricercatori con un preciso e ristretto obiettivo (selezione di una varietà con potenziate capacità produttive);
- (c) Il processo di diffusione dall'alto verso il basso: **top-down approach** verso gli agricoltori che possono adottare il nuovo prodotto e l'intero pacchetto tecnologico diffuso attraverso le strutture dell'extension service

CGIAR Consortium of International Agricultural Research Centers

Rivoluzione verde in Italia

Governi Militari e UNRRA (United Nation Relief and Rehabilitation Adm.)

Piano Marshall -- > « i paesi europei si trovarono a disporre di un patrimonio ingente di conoscenze ed esperienze, di ritrovati tecnici, di formule organizzative, bello e pronto per l'uso, purchè avessero avuto la forza di vincere l'inerzia della tradizione e della loro congenita disgregazione» (M.Rossi Doria, Considerazioni sull'agricoltura europea, 1960)

- * « L'Italia centro del mais ibrido in Europa (A.J.Nichols, Introduzione e diffusione del mais ibrido un Italia)
- Luigi Fenaroli, botanico, fitogeografo, maiscoltore
- Stazione sperimentale di maiscoltura di Bergamo

Dagli USA lotti di sementi ibride in regalo (aiuti ai Paesi Sottosviluppati Sperimentazione, assistenza tecnica e trattative commerciali sincrociavano per la prima volta (Nichols, 1948)

Stazione sperimentale di Bergamo come strumento per il processo di trasformazione sistemica dell'agricoltura ispirata al **principio** dell'uniformità colturale (convergenza tecnologica)

Mais ibrido come «an-all-or-nothing proposition» (D.K. Fitzgerald 1957)

Green revolution

- Dall'agricoltura di sussistenza all'agricoltura intensiva per il mercato
- Intensificazione, specializzazione, semplificazione, settorializzazione (industrializzazione dell'azienda agricola)
- Minore autonomia dell'azienda agricola
- Da sistema con cicli chiusi a sistema aperto
- Da/sistema diffuso a sistema concentrato (abbandono di aree marginali del territorio)
- Ingresso di crescenti fattori di produzione dall'esterno
- Decrescente efficienza d'uso di input
- -/ Output (commodity, non comm., paesaggio)
 - integrazione verticale delle attività produttive (Alcune multinazionali del settore possiedono, oltre alle industrie di trasformazione, anche terreni agricoli e catene di distribuzione)
- Specializzazione e standardizzazione delle tecnologie
 - Innovazione = trasferimento tecnologico

Prima ondata di problemi ambientali

► MALATTIE ECOLOGICHE

- → Malattie del biotopo: erosione, perdita di fertilità del terreno Impoverimento elementi nutritivi, salinizzazione, alcalinizzazione, inquinamento falde,
- Malattie della biocenosi: perdita di risorse genetiche vegetali e animali, eliminazione nemici naturali, comparsa nuovi fitofagi dannosi, resistenza genetica ai fitofarmaci, contaminazione chimica ed eliminazione dei meccanismi di controllo naturali

Seconda ondata di problemi ambientali

(secondo Altieri et al. 2015)

- Le aziende multinazionali --- vasti mercati internazionali per un singolo prodotto → uniformità genetica dei paesaggi
- Diffusione delle colture transgeniche minaccia la diversità genetica (riduce la complessità dei sistemi e determina erosione genetica
- Trasferimento non intenzionale di geni
- Probabile resistenza degl i insetti rispetto alla tossina del Bacillus thuringensis
- L'uso massiccio della tossina Bt può avere interazioni negative su insetti utili
- Tramite residui colturali le tossine Bt possono essere incorporate nel terreno
- Trasferimento mediante polline di transgeni

Sindrome diffusa: frammentazione.

cultura, ricerca, innovazione

- Allontanamento centri di ricerca azienda agricola
- Allontanamento tra discipline anche affini (Dipartimentalizzazione)
 - Frammentazione delle competenze e responsabilità (de-responsabilizzazione)

Superare la rivoluzione verde con un forte cambiamento: agroecologica

Innovazione dei sistemi agro-alimentari

Nuova ricerca partecipata

Educazione alla cittadinanza a partire dall'alimentazione

- Passaggio storico
- Ricerca, innovazione con un nuovo paradigma
- Formazione in un contesto in continuo cambiamento

Azienda agraria: serbatoio di ricchezze tangibili e intangibili

Azienda agraria: **sistema sociale e tecnico**, nel quale le persone si organizzano, lavorano e offrono lavoro, fanno ricorso a risorse umane e tecniche, vengono definiti gli obiettivi.

Azienda: sistema dinamico → le condizioni variano continuamente.

- → Sistema di conoscenza che tende a produrre nuove conoscenze.
- → Vera ricchezza: il sapere incorporato e accumulato nel tempo (local knowledge) e in quello degli individui che vi lavorano, l'immagine dell'azienda stessa all'interno e all'esterno, i valori diffusi, gli elementi tangibili e intangibili.

Azienda agraria come sistema complesso biologico che vive, scambia continuamente con il contesto territoriale informazioni, energia, biomasse e co-evolve

Nel passato recente: Cuppari, Crescini, Draghetti, ecc.

Alcune tecniche atte a ridurre gli input energetici pei sistemi produttivi (Altieri et al 2015)

- Promozione dell'efficienza fotosintetica (es architettura della pianta, precocità, meccanismi C4, CAM, architettura della coltura, pacciamatura)
- Modifica del microclima (frangivento, controllo gelate, pacciamature o cover crop)
- Gestione del terreno (cv tolleranti carenze nutritive, quantità e tempistiche di distribuzione di fertilizzanti, lavorazioni minime o ridotte, azotofissazione, felci azotofissatrici, allelopatie, micorizze)
- Gestione dell'acqua
- Gestione insetti fitofagi (azione preventiva e controllo es. maschiosterilità, feromoni, antagonismi,)
- Gestione delle malattie (rotazioni, cv resistenti, multilinee o miscugli, controllo biologico, coltura multipla
- Gestione avventizie (rotazioni, consociazioni, intercalari, allelopatie, tempestività delle azioni, lavorazioni, pacciamature, trapianti)
- Sistemi agronomici (rotazioni coltivazione multipla, consociazioni, colture perenni, pacciamature vive,)

Con approccio agro-ecologico: non esiste un modello unico di innovazione, ma principi e conoscenza applicati in modo integrato

Principi	Ambiente	Istituzioni	Sociale
Esempi	Approccio sistemico: 1) Fertilità dei suoli 2) agrobiodiversità 3) Varietà locali appropriate e qualità della semente 4) Controllo integrato 5) Efficienza d'uso dell'acqua irrigua alle diverse scale 6) Bionomia dei paesaggio 7) Ecoiatria	Approccio partecipativo integrato e funzionale 1) Programmi e azioni integrate includenti le autorità locali e nazionali. 2) Connessioni produttori/trasformatori/t rasportatori/mercati: analisi e progetti dall'azienda al piatto.	Agroecologia = social learning Servizi e supporti per programmi integrati (Fattorie didattiche e scuole). Educazione ambientale agro-alimentare alla scala locale

Agricoltura industrializzata

Disconnessione dai cicli naturali

Settorializzazione

Dipendenza dal mercato (globale)

Da alimenti a commodity

Tecnologie (meccaniche, genetiche, chimiche)

Allargamento della scala come traiettoria dominante Intensificazione come funzione tecnologica

Specializzazione

Rottura tra passato, presente e futuro

Ricerca specializzata ed esterna

Privatizzazione risorse

Sistemi Agro-alimentari

Integrazione con cicli naturali, coevoluzione
Integrazione settori produttivi e insediativi
Ricerca di autonomia dai mercati degli input.
Differenziazione degli output
Da commodity a prodotti contestualizzati
Centralità delle tecnologie orientate alle
competenze

Cooperazione, creazione di associazioni Intensificazione basata su quantità e qualità del lavoro

Multifunzionalità

Continuità fra passato, presente e futuro Interdisciplinarità e partecipazione

Aumento della ricchezza sociale e territoriale

Servizi ecosistemici (Millennium Ecosystem Assessment 2005),

i tanti e differenziati benefici che gli ecosistemi offrono all'umanità

- 1) supporto alla vita (es. formazione del suolo, ciclo nutrienti),
- 2) approvvigionamento (es. cibo, materiali, acqua potabile, irrigua, combustibili),
- 3) regolazione (es. clima, maree, depurazione dell'acqua, impollinazione, equilibri flora/fauna),
- 4) valori culturali (es. estetici, spirituali, educativi e ricreativi).

Ecosystem Services

Use Value

Non-use Value

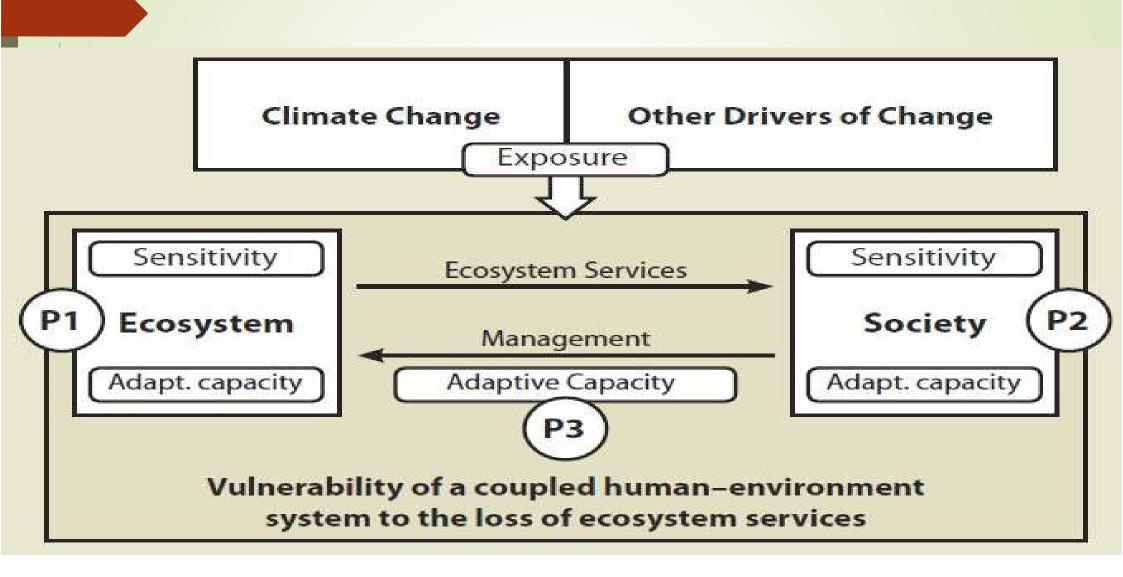
Direct use value

Market value resulting from direct usability of environment products such as raw materials and food

Indrect use value

Value derived from direct ecosystem services such as environmental self-regulation and flood control

Option value


Future value derived from a complete, healthy environment. (Example: genetic resources)

Legacy/struistk Value

Value of leaving the environment for the sest of humanity and tuture generations

Intrinsic value

Satisfaction derived from the existence of nature

Transdisciplinarità

- Forma di cooperazione fra i diversi domini scientifici (discipline) e la società civile
- Forma di innovazione che include diverse discipline (multi-interdisciplinarità) focalizzata su problemi condivisi e su dati/informazioni/esigenze di origine esterna all'accademia.

Punti chiave da affrontare (Brandt et al. 2013)

- Carenza di un quadro coerente e chiaro dei problemi da affrontare
- Integrazione di metodi disciplinari e sviluppo di nuove metodiche che consentano un efficace e rapido apprendimento (interfaccia mondo scientifico/società civile)
- Processi di ricerca e produzione di conoscenza (a)identificazione e strutturazione del problema; b) analisi del problema orientata alle soluzioni; c) integrazione e applicazioni nella pratica)
- Coinvolgimento della società civile (diverso livello, informazione, consultazione, collaborazione, partecipazione funzionale e responsabilizzata)
- Verifica degli impatti

Cinque livelli di Gliessman «Transforming food systems with agroecology»

- Transdisciplinarità, partecipazione, ricercaazione orientata al cambiamento,
- Agroecologia connette scienza, pratica, movimenti che mirano al cambiamento socioeconomico ed ecologico
- E' un processo che può seguire diversi passaggi

5 livelli

- Livello 1: aumentare l'efficienza di pratiche (industriali e convenzionali) per ridurre l'uso e il consumo di input costosi, scarsi, e dannosi
- Livello 2: sostituire le pratiche industriali/convenzionali con pratiche alternative
- Livello 3: Ridisegnare l'agro-ecosistema in modo tale che funzioni sulla base di un nuovo set di processi ecologici
- Livello 4: Ristabilire una più diretta connessione tra i produttori e i consumatori
- Livello 5: sulle fondamenta create alla scala di sistema aziendale sostenibile (livello 3) e con le nuove connessioni (livello 4) costruire un nuovo sistema globale del cibo, basato su equità, partecipazione, democrazia, e giustizia, che non sia solo sostenibile, ma che aiuti a restaurare e proteggere i sistemi che permettono la vita sulla terra.

AGROECOLOGIA E BIOARCHITETTURA

opportunità per nuove economie sostenibili

3 febbraio 2017

CENTRO PARCO "R.N.O. LA FAGIANA" DI MAGENTA (MI) FRAZ. PONTEVECCHIO

Agroecologia.

- le nuove frontiere: superare l'attuale assetto ancora legato alla GR
- le funzioni: fornire una cornice culturale, una casa comune, un nuovo paradigma
- le economie: valore degli ES (PES) ridando piena funzione all'azienda agricola, perno dei sistemi agroalimentari